Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fast solution of wave propagation in periodic structures usually relies on simplified approaches, such as analytical methods, transmission line models, scattering matrix approaches, plane wave methods, etc. For complex multi-dimensional problems, computationally intensive direct numerical simulation (DNS) is always needed. This study demonstrates a fast and accurate simulation methodology enabled by a physics-based learning methodology, derived from proper orthogonal decomposition (POD) and Galerkin projection, for periodic quantum nanostructure and photonic crystals. POD is a projection-based method that generates optimal basis functions (or POD modes) via solution data collected from DNSs. This process trains the POD modes to adapt parametric variations of the system and offers the best least squares (LS) fit to the solution using the smallest number of modes. This is very different from other projection approaches, e.g., Fourier, Legendre, Bessel, Airy functions, etc., that adopt assumed basis functions selected for the problem based on the solution form. After generating the optimal POD modes, Galerkin projection of the wave equation onto each of the POD modes is performed to close the model and incorporate physical principles guided by the wave equation. Such a rigorous approach offers efficient simulations with high accuracy and exhibits the extrapolation ability in cases reasonably beyond the training bounds. The POD-Galerkin methodology is applied in this study to predict band structures and wave solutions for 2D periodic quantum-dot and photonic-lattice structures. The plane-wave approach is also included in a periodic quantum-dot structure to illustrate the superior performance of the POD-Galerkin methodology. The POD-Galerkin approach offers a 2-order computing speedup for both nanostructure and optical superlattices, compared to DNS, when solving both the wave solution and band structure. If the band structure is the only concern, a 4-order improvement in computational efficiency can be achieved. Fig. 1(a) shows the optical superlattice in a demonstration, where a unit cell includes 22 discs with diagonally symmetrical refractive indices and the background index n = 1. The POD modes for this case are trained by TE mode electric field data collected from DNSs with variation of diagonally symmetrical refractive indices. The LS error of the predicted electric field wave solution from the POD-Galerkin approach, shown in Fig. 1(b) compared to DNS, is below 1% with just 8 POD modes that offer a more than 4-order reduction in the degrees of freedom, compared to DNS. In addition, an extremely accurate prediction of band structure is illustrated in Fig. 1(c) with a maximum error below 0.1% in the entire Brillouin zone.more » « less
-
A rigorous physics-informed learning methodology is proposed for predictions of wave solutions and band structures in electronic and optical superlattice structures. The methodology is enabled by proper orthogonal decomposition (POD) and Galerkin projection of the wave equation. The approach solves the wave eigenvalue problem in POD space constituted by a finite set of basis functions (or POD modes). The POD ensures that the generated modes are optimized and tailored to the parametric variations of the system. Galerkin projection however enforces physical principles in the methodology to further enhance the accuracy and efficiency of the developed model. It has been demonstrated that the POD-Galerkin methodology offers an approach with a reduction in degrees of freedom by 4 orders of magnitude, compared to direct numerical simulation (DNS). A computing speedup near 15,000 times over DNS can be achieved with high accuracy for either of the superlattice structures if only the band structure is calculated without the wave solution. If both wave function solution and band structure are needed, a 2-order reduction in computational time can be achieved with a relative least square error (LSE) near 1%. When the training is incomplete or the desired eigenstates are slightly beyond the training bounds, an accurate prediction with an LSE near 1%-2% still can be reached if more POD modes are included. This reveals its remarkable learning ability to reach correct solutions with the guidance of physical principles provided by Galerkin projection.more » « less
-
The classical proper orthogonal decomposition (POD) with the Galerkin projection (GP) has been revised for chip-level thermal simulation of microprocessors with a large number of cores. An ensemble POD-GP methodology (EnPODGP) is introduced to significantly improve the training effectiveness and prediction accuracy by dividing a large number of heat sources into heat source blocks (HSBs) each of which may contains one or a very small number of heat sources. Although very accurate, efficient and robust to any power map, EnPOD-GP suffers from intensive training for microprocessors with an enormous number of cores. A local-domain EnPOD-GP model (LEnPOD-GP) is thus proposed to further minimize the training burden. LEnPOD-GP utilizes the concepts of local domain truncation and generic building blocks to reduce the massive training data. LEnPOD-GP has been demonstrated on thermal simulation of NVIDIA Tesla Volta™ GV100, a GPU with more than 13,000 cores including FP32, FP64, INT32, and Tensor Cores. Due to the domain truncation for LEnPOD-GP, the least square error (LSE) is degraded but is still as small as 1.6% over the entire space and below 1.4% in the device layer when using 4 modes per HSB. When only the maximum temperature of the entire GPU is of interest, LEnPOD-GP offers a computing speed 1.1 million times faster than the FEM with a maximum error near 1.2oC over the entire simulation time.more » « less
-
Abstract Multi-dimensional direct numerical simulation (DNS) of the Schrödinger equation is needed for design and analysis of quantum nanostructures that offer numerous applications in biology, medicine, materials, electronic/photonic devices, etc. In large-scale nanostructures, extensive computational effort needed in DNS may become prohibitive due to the high degrees of freedom (DoF). This study employs a physics-based reduced-order learning algorithm, enabled by the first principles, for simulation of the Schrödinger equation to achieve high accuracy and efficiency. The proposed simulation methodology is applied to investigate two quantum-dot structures; one operates under external electric field, and the other is influenced by internal potential variation with periodic boundary conditions. The former is similar to typical operations of nanoelectronic devices, and the latter is of interest to simulation and design of nanostructures and materials, such as applications of density functional theory. In each structure, cases within and beyond training conditions are examined. Using the proposed methodology, a very accurate prediction can be realized with a reduction in the DoF by more than 3 orders of magnitude and in the computational time by 2 orders, compared to DNS. An accurate prediction beyond the training conditions, including higher external field and larger internal potential in untrained quantum states, is also achieved. Comparison is also carried out between the physics-based learning and Fourier-based plane-wave approaches for a periodic case.more » « less
An official website of the United States government

Full Text Available